array atca observations: Topics by Science.gov

June 2, 2021

  • Investigations in site response from ground motion observations in vertical arrays

    NASA Astrophysics Data System (ADS)

    Baise, Laurie Gaskins

    The aim of the research is to improve the understanding of earthquake site response and to improve the techniques available to investigate issues in this field. Vertical array ground motion data paired with the empirical transfer function (ETF) methodology is shown to accurately characterize site response. This manuscript draws on methods developed in the field of signal processing and statistical time series analysis to parameterize the ETF as an autoregressive moving-average (ARMA) system which is justified theoretically, historically, and by example. Site response is evaluated at six sites in California, Japan, and Taiwan using ETF estimates, correlation analysis, and full waveform modeling. Correlation analysis is proposed as a required data quality evaluation imperative to any subsequent site response analysis. ETF estimates and waveform modeling are used to decipher the site response at sites with simple and complex geologic structure, which provide simple time-invariant and time-variant methods for evaluating both linear site transfer functions and nonlinear site response for sites experiencing liquefaction of the soils. The Treasure and Yerba Buena Island sites, however, require 2-D waveform modeling to accurately evaluate the effects of the shallow sedimentary basin. ETFs are used to characterize the Port Island site and corresponding shake table tests before, during, and after liquefaction. ETFs derived from the shake table tests were demonstrated to consistently predict the linear field ground response below 16 m depth and the liquefied behavior above 15 m depth. The liquefied interval response was demonstrated to gradually return to pre-liquefied conditions within several weeks of the 1995 Hyogo-ken Nanbu earthquake. Both the site’s and the shake table test’s response were shown to be effectively linear up to 0.5 g in the native materials below 16 m depth. The effective linearity of the site response at GVDA, Chiba, and Lotting up to 0.1 g, 0.33 g, and

  • New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Acero, F.; Aloisio, R.; Amans, J.; Amato, E.; Antonelli, L. A.; Aramo, C.; Armstrong, T.; Arqueros, F.; Asano, K.; Ashley, M.; Backes, M.; Balazs, C.; Balzer, A.; Bamba, A.; Barkov, M.; Barrio, J. A.; Benbow, W.; Bernlöhr, K.; Beshley, V.; Bigongiari, C.; Biland, A.; Bilinsky, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blasi, P.; Blazek, J.; Boisson, C.; Bonanno, G.; Bonardi, A.; Bonavolontà, C.; Bonnoli, G.; Braiding, C.; Brau-Nogué, S.; Bregeon, J.; Brown, A. M.; Bugaev, V.; Bulgarelli, A.; Bulik, T.; Burton, M.; Burtovoi, A.; Busetto, G.; Böttcher, M.; Cameron, R.; Capalbi, M.; Caproni, A.; Caraveo, P.; Carosi, R.; Cascone, E.; Cerruti, M.; Chaty, S.; Chen, A.; Chen, X.; Chernyakova, M.; Chikawa, M.; Chudoba, J.; Cohen-Tanugi, J.; Colafrancesco, S.; Conforti, V.; Contreras, J. L.; Costa, A.; Cotter, G.; Covino, S.; Covone, G.; Cumani, P.; Cusumano, G.; D’Ammando, F.; D’Urso, D.; Daniel, M.; Dazzi, F.; De Angelis, A.; De Cesare, G.; De Franco, A.; De Frondat, F.; de Gouveia Dal Pino, E. M.; De Lisio, C.; de los Reyes Lopez, R.; De Lotto, B.; de Naurois, M.; De Palma, F.; Del Santo, M.; Delgado, C.; della Volpe, D.; Di Girolamo, T.; Di Giulio, C.; Di Pierro, F.; Di Venere, L.; Doro, M.; Dournaux, J.; Dumas, D.; Dwarkadas, V.; Díaz, C.; Ebr, J.; Egberts, K.; Einecke, S.; Elsässer, D.; Eschbach, S.; Falceta-Goncalves, D.; Fasola, G.; Fedorova, E.; Fernández-Barral, A.; Ferrand, G.; Fesquet, M.; Fiandrini, E.; Fiasson, A.; Filipovíc, M. D.; Fioretti, V.; Font, L.; Fontaine, G.; Franco, F. J.; Freixas Coromina, L.; Fujita, Y.; Fukui, Y.; Funk, S.; Förster, A.; Gadola, A.; Garcia López, R.; Garczarczyk, M.; Giglietto, N.; Giordano, F.; Giuliani, A.; Glicenstein, J.; Gnatyk, R.; Goldoni, P.; Grabarczyk, T.; Graciani, R.; Graham, J.; Grandi, P.; Granot, J.; Green, A. J.; Griffiths, S.; Gunji, S.; Hakobyan, H.; Hara, S.; Hassan, T.; Hayashida, M.; Heller, M.; Helo, J. C.; Hinton, J.; Hnatyk, B.; Huet, J.; Huetten, M.; Humensky, T. B.; Hussein, M.; Hörandel, J.; Ikeno, Y.; Inada, T.; Inome, Y.; Inoue, S.; Inoue, T.; Inoue, Y.; Ioka, K.; Iori, M.; Jacquemier, J.; Janecek, P.; Jankowsky, D.; Jung, I.; Kaaret, P.; Katagiri, H.; Kimeswenger, S.; Kimura, S.; Knödlseder, J.; Koch, B.; Kocot, J.; Kohri, K.; Komin, N.; Konno, Y.; Kosack, K.; Koyama, S.; Kraus, M.; Kubo, H.; Kukec Mezek, G.; Kushida, J.; La Palombara, N.; Lalik, K.; Lamanna, G.; Landt, H.; Lapington, J.; Laporte, P.; Lee, S.; Lees, J.; Lefaucheur, J.; Lenain, J.-P.; Leto, G.; Lindfors, E.; Lohse, T.; Lombardi, S.; Longo, F.; Lopez, M.; Lucarelli, F.; Luque-Escamilla, P. L.; López-Coto, R.; Maccarone, M. C.; Maier, G.; Malaguti, G.; Mandat, D.; Maneva, G.; Mangano, S.; Marcowith, A.; Martí, J.; Martínez, M.; Martínez, G.; Masuda, S.; Maurin, G.; Maxted, N.; Melioli, C.; Mineo, T.; Mirabal, N.; Mizuno, T.; Moderski, R.; Mohammed, M.; Montaruli, T.; Moralejo, A.; Mori, K.; Morlino, G.; Morselli, A.; Moulin, E.; Mukherjee, R.; Mundell, C.; Muraishi, H.; Murase, K.; Nagataki, S.; Nagayoshi, T.; Naito, T.; Nakajima, D.; Nakamori, T.; Nemmen, R.; Niemiec, J.; Nieto, D.; Nievas-Rosillo, M.; Nikołajuk, M.; Nishijima, K.; Noda, K.; Nogues, L.; Nosek, D.; Novosyadlyj, B.; Nozaki, S.; Ohira, Y.; Ohishi, M.; Ohm, S.; Okumura, A.; Ong, R. A.; Orito, R.; Orlati, A.; Ostrowski, M.; Oya, I.; Padovani, M.; Palacio, J.; Palatka, M.; Paredes, J. M.; Pavy, S.; Pe’er, A.; Persic, M.; Petrucci, P.; Petruk, O.; Pisarski, A.; Pohl, M.; Porcelli, A.; Prandini, E.; Prast, J.; Principe, G.; Prouza, M.; Pueschel, E.; Pühlhofer, G.; Quirrenbach, A.; Rameez, M.; Reimer, O.; Renaud, M.; Ribó, M.; Rico, J.; Rizi, V.; Rodriguez, J.; Rodriguez Fernandez, G.; Rodríguez Vázquez, J. J.; Romano, P.; Romeo, G.; Rosado, J.; Rousselle, J.; Rowell, G.; Rudak, B.; Sadeh, I.; Safi-Harb, S.; Saito, T.; Sakaki, N.; Sanchez, D.; Sangiorgi, P.; Sano, H.; Santander, M.; Sarkar, S.; Sawada, M.; Schioppa, E. J.; Schoorlemmer, H.; Schovanek, P.; Schussler, F.; Sergijenko, O.; Servillat, M.; Shalchi, A.; Shellard, R. C.; Siejkowski, H.; Sillanpää, A.; Simone, D.; Sliusar, V.; Sol, H.; Stanič, S.; Starling, R.; Stawarz, Ł.; Stefanik, S.; Stephan, M.; Stolarczyk, T.; Szanecki, M.; Szepieniec, T.; Tagliaferri, G.; Tajima, H.; Takahashi, M.; Takeda, J.; Tanaka, M.; Tanaka, S.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Terada, Y.; Tescaro, D.; Teshima, M.; Testa, V.; Thoudam, S.; Tokanai, F.; Torres, D. F.; Torresi, E.; Tosti, G.; Townsley, C.; Travnicek, P.; Trichard, C.; Trifoglio, M.; Tsujimoto, S.; Vagelli, V.; Vallania, P.; Valore, L.; van Driel, W.; van Eldik, C.; Vandenbroucke, J.; Vassiliev, V.; Vecchi, M.; Vercellone, S.; Vergani, S.; Vigorito, C.; Vorobiov, S.; Vrastil, M.; Vázquez Acosta, M. L.; Wagner, S. J.; Wagner, R.; Wakely, S. P.; Walter, R.; Ward, J. E.; Watson, J. J.; Weinstein, A.; White, M.; White, R.; Wierzcholska, A.; Wilcox, P.; Williams, D. A.; Wischnewski, R.; Wojcik, P.; Yamamoto, T.; Yamamoto, H.; Yamazaki, R.; Yanagita, S.; Yang, L.; Yoshida, T.; Yoshida, M.; Yoshiike, S.; Yoshikoshi, T.; Zacharias, M.; Zampieri, L.; Zanin, R.; Zavrtanik, M.; Zavrtanik, D.; Zdziarski, A.; Zech, A.; Zechlin, H.; Zhdanov, V.; Ziegler, A.; Zorn, J.

    2017-05-01

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (I.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.

  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    DOE PAGES

    Acero, F.; Aloisio, R.; Amans, J.; …

    2017-05-09

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7–3946

    SciTech Connect

    Acero, F.; Aloisio, R.; Amans, J.

    Here, we perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7–3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7–3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emissionmore » observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  • Analysis of Meteorological Observations from an Array of Buoys During JASIN.

    DTIC Science & Technology

    1980-01-01

    13 1:3.06 13 18 40.16 b .4 9 5 , 13 1. 𔄃. 󈧢 2 65,16 8 4 10 4.08 “’ I 1 18 1. 3 09 :132’.., 127 46൛ 19 . 0 6” 7’ “” -’ 1111 , 3 … 11 10 1,3 96…N00014-79-C-0004 i 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 . PROGRAM ELEMENT. PROJECT, TASK School of Oceanography AREAB WORK UNIT NUMBERS Oregon…III. OBSERVATIONS ———————————————- 5 IV. SPECTRA————————————————– 10 V. TAYLOR’S

  • Supernova and optical transient observations using the three wide-field telescope array of the KMTNet

    NASA Astrophysics Data System (ADS)

    Moon, Dae-Sik; Kim, Sang Chul; Lee, Jae-Joon; Pak, Mina; Park, Hong Soo; He, Matthias Y.; Antoniadis, John; Ni, Yuan Qi; Lee, Chung-Uk; Kim, Seung-Lee; Park, Byeong-Gon; Kim, Dong-Jin; Cha, Sang-Mok; Lee, Yongseok; Gonzalez, Santiago

    2016-08-01

    The Korea Microlensing Telescope Network (KMTNet) is a network of three new 1.6-m, wide-field telescopes spread over three different sites in Chile, South Africa and Australia. Each telescope is equipped with a four square degree wide-field CCD camera, making the KMTNet an ideal facility for discovering and monitoring early supernovae and other rapidly evolving optical transients by providing 24-hour continuous sky coverage. We describe our inaugurating program of observing supernovae and optical transients using about 20% of the KMTNet time in 2015-2019. Our early results include detection of infant supernovae, novae and peculiar transients as well as numerous variable stars and low surface brightness objects such as dwarf galaxies.

  • Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects.

    PubMed

    Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S

    2008-12-08

    We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS “obscura telescope” over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms. (c) 2008 Optical Society of America

  • Synchronized observations of cloud-to-ground lightning using VHF broadband interferometer and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Qiu, Shi; Zhou, Bi-Hua; Shi, Li-Hua

    2012-10-01

    A single-station-based lightning discharge channel reconstruction system by combining a two-dimensional (2D) VHF broadband interferometer and a three-dimensional (3D) acoustic lighting mapping system has been developed and used for lightning observations. Two cloud-to-ground (CG) flashes with highly branched leaders recorded by the system are analyzed and presented in this paper. VHF radiation could well delineate the development of simultaneous leader branches, while acoustic emissions mainly located on the main channel which was traversed by return stroke (RS) process. Localizations by VHF and acoustic emissions agree well with each other. The mapping results confirm that audible acoustic emission of lightning discharge is mainly associated with high current process like RS. Leaders could generate detectable acoustic signals, with amplitude at least an order weaker than ensuing RS, but they are hard to identify except in closer ranges than the main channel. As a significant phenomenon, this paper provides the first 3D locations associated with sources of tearing sounds, which are inferred to be generated by downward negative leaders when they approach ground. The synchronized observation enable VHF interferometer locate lightning development in spatially quasi 3D, and three stepped leaders, five dart leaders and two dart-stepped leaders are identified, with the 3D velocity (1.3-3.9) × 105 m/s, (1.0-2.9) × 107 m/s and from (1.0-1.3) × 107 m/s to (2.4-2.6) × 106 m/s, respectively. In addition, the application of this approach in improving the accuracy of thunder ranging is discussed.

  • Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7−3946

    SciTech Connect

    Acero, F.; Aloisio, R.; Amato, E.

    We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7−3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti)correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H i emission. We present a series of simulated images of RX J1713.7−3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observedmore » by XMM-Newton , whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H i observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.« less

  • LUMINOUS INFRARED GALAXIES WITH THE SUBMILLIMETER ARRAY. IV. {sup 12}CO J = 6-5 OBSERVATIONS OF VV 114

    SciTech Connect

    Sliwa, Kazimierz; Wilson, Christine D.; Krips, Melanie

    We present high-resolution (∼2.”5) observations of {sup 12}CO J = 6-5 toward the luminous infrared galaxy VV 114 using the Submillimeter Array. We detect {sup 12}CO J = 6-5 emission from the eastern nucleus of VV 114 but do not detect the western nucleus or the central region. We combine the new {sup 12}CO J = 6-5 observations with previously published or archival low-J CO observations, which include {sup 13}CO J = 1-0 Atacama Large Millimeter/submillimeter Array cycle 0 observations, to analyze the beam-averaged physical conditions of the molecular gas in the eastern nucleus. We use the radiative transfer codemore » RADEX and a Bayesian likelihood code to constrain the temperature (T{sub kin}), density (n{sub H{sub 2}}), and column density (N{sub {sup 1}{sup 2}CO}) of the molecular gas. We find that the most probable scenario for the eastern nucleus is a cold (T{sub kin} = 38 K), moderately dense (n{sub H{sub 2}} = 10{sup 2.89} cm{sup –3}) molecular gas component. We find that the most probable {sup 12}CO to {sup 13}CO abundance ratio ([{sup 12}CO]/[{sup 13}CO]) is 229, which is roughly three times higher than the Milky Way value. This high abundance ratio may explain the observed high {sup 12}CO/ {sup 13}CO line ratio (>25). The unusual {sup 13}CO J = 2-1/J = 1-0 line ratio of 0.6 is produced by a combination of moderate {sup 13}CO optical depths (τ = 0.4-1.1) and extremely subthermal excitation temperatures. We measure the CO-to-H{sub 2} conversion factor, α{sub CO}, to be 0.5{sup +0.6}{sub -0.3} M{sub } (K km s{sup –1} pc{sup 2}){sup –1}, which agrees with the widely used factor for ultra luminous infrared galaxies of Downes and Solomon (α{sub CO} = 0.8 M{sub } (K km s{sup –1} pc{sup 2}){sup –1})« less

  • Insights into the nature of northwest-to-southeast aligned ionospheric wavefronts from contemporaneous Very Large Array and ionosonde observations

    NASA Astrophysics Data System (ADS)

    Helmboldt, J. F.

    2012-07-01

    The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 20-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5​ observations when foEs > ​3 MHz that was not present when 1.5​ observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.

  • Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel’dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; hide hide

    2006-01-01

    We report measurements of the Sunyaev-Zel’dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer – the Sunyaev-Zel’dovich Array (SZA) – built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  • Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel’dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.; Loh, Michael; hide hide

    2006-01-01

    We report measurements of the Sunyaev-Zel’dovich (SZ) effect in three highredshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer – the Sunyaev-Zel dovich Array (SZA) – built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9(sup +0.5)(sub -0.4) x 10(sup 14) solar mass for ClJ1415.1+3612, 3.4 (sup +0.6)(sup -0.5) x 10(sup 14) solar mass for ClJ1429.0+4241 and 7.2(sup +1.3)(sub -0.9) x 10(sup 14) solar mass for ClJ1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  • Integration of Infrasound, Atmospheric Pressure, and Seismic Observations with the NSF EarthScope USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Tytell, J.; Hedlin, M. A. H.; Walker, K.; Busby, R.; Woodward, R.

    2012-04-01

    Earthscope’s USArray Transportable Array (TA) network serves as a real-time monitoring and recording platform for both seismic and weather phenomena. To date, most of the approximately 500 TA stations have been retrofitted with VTI SCP1000 MEMS barometric pressure gauges capable of recording data at 1 sample per second (sps). Additionally, over 300 of the TA stations have also been retrofitted with Setra 278 barometric gauges and NCPA infrasound sensors capable of recording data at 1 and 40 sps. While individual seismic events have been successfully researched via the TA network, observations of powerful weather events by the TA network have yet to be embraced by the scientific community. This presentation will focus on case studies involving severe weather passage across portions of the TA network throughout 2011 in order to highlight its viability as a platform for real-time weather monitoring and research. It will also highlight the coupling of atmospheric signals into the seismic observations. Examples of gust front passages and pressure couplets from severe thunderstorms will be presented, as will observations of multiple tornados occurred in the Spring of 2011. These data will demonstrate the overall viability of the TA network for monitoring severe weather events in real-time.

  • PULSAR OBSERVATIONS USING THE FIRST STATION OF THE LONG WAVELENGTH ARRAY AND THE LWA PULSAR DATA ARCHIVE

    SciTech Connect

    Stovall, K.; Dowell, J.; Eftekhari, T.

    2015-08-01

    We present initial pulsar results from the first station of the Long Wavelength Array (LWA1) obtained during the commissioning period of LWA1 and in early science results. We present detections of periodic emission from 44 previously known pulsars, including 3 millisecond pulsars. The effects of the interstellar medium (ISM) on pulsar emission are significantly enhanced at the low frequencies of the LWA1 band (10–88 MHz), making LWA1 a very sensitive instrument for characterizing changes in the dispersion measure (DM) and other effects from the ISM. Pulsars also often have significant evolution in their pulse profile at low frequency and amore » break in their spectral index. We report DM measurements for 44 pulsars, mean flux density measurements for 36 pulsars, and multi-frequency component spacing and widths for 15 pulsars with more than one profile component. For 27 pulsars, we report spectral index measurements within our frequency range. We also introduce the LWA1 Pulsar Data Archive, which stores reduced data products from LWA1 pulsar observations. Reduced data products for the observations presented here can be found in the archive. Reduced data products from future LWA1 pulsar observations will also be made available through the archive.« less

  • First Year Observations of Antarctic Circumpolar Current Variability and Internal Wave Activity from the DIMES Mooring Array

    NASA Astrophysics Data System (ADS)

    Brearley, J. A.; Sheen, K. L.; Naveira-Garabato, A. C.

    2012-04-01

    A key component of DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) is the deployment of a two-year cross-shaped mooring array in the Antarctic Circumpolar Current to the east of Drake Passage close to 57°W. Motivation for the cluster arises from the need to understand how eddies dissipate in the Southern Ocean, and specifically how much energy is extracted from the mesoscale by breaking internal waves, which in turn leads to turbulent mixing. The location of the mooring cluster was chosen to fulfil these objectives, being situated in a region of pronounced finestructure with high eddy kinetic energy and rough topography. The array, comprising 34 current meters and Microcats and a downward-looking ADCP, was first deployed in December 2009 and serviced in December 2010. Time series of current meter results from the most heavily-instrumented ‘C’ mooring indicate that a strong (up to 80 cms-1) surface-intensified north-eastward directed ACC occupies the region for most of the year, with over 85% of the variability in current speed being accounted for by equivalent barotropic fluctuations. A strong mean poleward heat flux is observed at the site, which compares favourably in magnitude with literature results from other ACC locations. Interestingly, four episodes of mid-depth (~2000 m) current speed maxima, each of a few days duration, were found during the 360-day time series, a situation also observed by the lowered ADCP during mooring servicing in December 2010. Early results indicate that these episodes, which coincide with time minima in stratification close to 2000 m, could profoundly influence the nature of eddy-internal wave interactions at these times. Quantification of the energy budget at the mooring cluster has been a key priority. When compared with previous moorings located in Drake Passage (Bryden, 1977), a near threefold-increase in mean eddy kinetic energy (EKE) is observed despite a small reduction in the mean kinetic energy

  • Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Ayabe, S.; Cui, S. W.; Danzengluobu; Ding, L. K.; Ding, X. H.; Feng, C. F.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Guo, H. W.; He, H. H.; He, M.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Huang, Q.; Jia, H. Y.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Labaciren; Le, G. M.; Li, J. Y.; Lu, H.; Lu, S. L.; Meng, X. R.; Mizutani, K.; Mu, J.; Munakata, K.; Nagai, A.; Nanjo, H.; Nishizawa, M.; Ohnishi, M.; Ohta, I.; Onuma, H.; Ouchi, T.; Ozawa, S.; Ren, J. R.; Saito, T.; Sakata, M.; Sasaki, T.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Utsugi, T.; Wang, B. S.; Wang, H.; Wang, X.; Wang, Y. G.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yan, C. T.; Yang, X. C.; Yasue, S.; Ye, Z. H.; Yu, G. C.; Yuan, A. F.; Yuda, T.; Zhang, H. M.; Zhang, J. L.; Zhang, N. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhaxisangzhu; Zhou, X. X.; Tibet Asγ Collaboration

    2005-06-01

    We present the large-scale sidereal anisotropy of Galactic cosmic-ray intensity in the multi-TeV region observed with the Tibet-III air shower array during the period from 1999 through 2003. The sidereal daily variation of cosmic rays observed in this experiment shows an excess of relative intensity around 4-7 hr local sidereal time as well as a deficit around 12 hr local sidereal time. While the amplitude of the excess is not significant when averaged over all declinations, the excess in individual declination bands becomes larger and clearer as the viewing direction moves toward the south. The maximum phase of the excess intensity changes from ~7 hr at the Northern Hemisphere to ~4 hr at the equatorial region. We also show that both the amplitude and the phase of the first harmonic vector of the daily variation are remarkably independent of primary energy in the multi-TeV region. This is the first result determining the energy and declination dependences of the full 24 hr profiles of the sidereal daily variation in the multi-TeV region with a single air shower experiment.

  • THE ARECIBO L-BAND FEED ARRAY ZONE OF AVOIDANCE SURVEY. I. PRECURSOR OBSERVATIONS THROUGH THE INNER AND OUTER GALAXY

    SciTech Connect

    Henning, P. A.; McIntyre, T.; Day, F.

    The Arecibo L-band Feed Array (ALFA) is being used to conduct a low-Galactic latitude survey, to map the distribution of galaxies and large-scale structures behind the Milky Way through detection of galaxies’ neutral hydrogen (H I) 21 cm emission. This Zone of Avoidance (ZOA) survey finds new H I galaxies which lie hidden behind the Milky Way, and also provides redshifts for partially obscured galaxies known at other wavelengths. Before the commencement of the full survey, two low-latitude precursor regions were observed, totaling 138 deg{sup 2}, with 72 H I galaxies detected. Detections through the inner Galaxy generally have nomore » cataloged counterparts in any other waveband, due to the heavy extinction and stellar confusion. Detections through the outer Galaxy are more likely to have Two Micron All Sky Survey counterparts. We present the results of these precursor observations, including a catalog of the detected galaxies, with their H I parameters. The survey sensitivity is well described by a flux- and linewidth-dependent signal-to-noise ratio of 6.5. ALFA ZOA galaxies, which also have H I measurements in the literature, show good agreement between our measurements and previous work. The inner Galaxy precursor region was chosen to overlap the H I Parkes Zone of Avoidance Survey, so ALFA performance could be quickly assessed. The outer Galaxy precursor region lies north of the Parkes sky. Low-latitude large-scale structure in this region is revealed, including an overdensity of galaxies near l = 183{sup 0} and between 5000-6000 km s{sup -1} in the ZOA. The full ALFA ZOA survey will be conducted in two phases: a shallow survey using the observing techniques of the precursor observations, and also a deep phase with much longer integration time, with thousands of galaxies predicted for the final catalog.« less

  • Using a coherent hydrophone array for observing sperm whale range, classification, and shallow-water dive profiles.

    PubMed

    Tran, Duong D; Huang, Wei; Bohn, Alexander C; Wang, Delin; Gong, Zheng; Makris, Nicholas C; Ratilal, Purnima

    2014-06-01

    Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing, and classified using a single low-frequency (array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. Multiple concurrently vocalizing sperm whales, in the far-field of the horizontal receiver array, were distinguished and classified based on their horizontal spatial locations and the inter-pulse intervals of their vocalized click signals. The dive profile was estimated for a sperm whale in the shallow waters of the Gulf of Maine with 160 m water-column depth located close to the array’s near-field where depth estimation was feasible by employing time difference of arrival of the direct and multiply reflected click signals received on the horizontal array. By accounting for transmission loss modeled using an ocean waveguide-acoustic propagation model, the sperm whale detection range was found to exceed 60 km in low to moderate sea state conditions after coherent array processing.

  • Source